4.8 Article

Two-dimensional supramolecular organization of copper octaethylporphyrin and cobalt phthalocyanine on Au(III): Molecular assembly control at an electrochemical interface

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 126, Issue 27, Pages 8540-8545

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja0485210

Keywords

-

Ask authors/readers for more resources

Mixed adlayers; of 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine copper(II) (CuOEP) and cobalt(II) phthalocyanine (CoPc) were prepared by immersing Au(111) substrate in a benzene solution containing CuOEP and CoPc molecules, and they were investigated in 0.1 M HClO4 by cyclic voltammetry (CV) and in-situ scanning tunneling microscopy (STM). The composition of the mixed adlayer consisting of CuOEP and CoPc molecules was found to vary depending on the immersion time. CoPc molecules displaced CuOEP molecules during the modification process with increasing immersion time, and the CuOEP molecules were completely replaced with CoPc molecules in the mixed solution after a long modification time. The two-component adlayer consisting of CuOEP and CoPc, which has a structure with the constituent molecules arranged alternately, was found to form either a p(9 x 3root7R - 40.9degrees) or a p(9 x 3root7R - 19.1degrees) structure, each involving two molecules on the Au(111) surface. The surface mobility and the molecular reorganization of CuOEP and CoPc were accelerated by modulation of the electrode potential. Different surface structures were produced at different electrode potentials, and hence potential modulation should allow a precisely controllable phase separation to take place in aqueous HClO4.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available