4.7 Article Proceedings Paper

Formation process of unique microstructure in rapidly solidified Mg97Zn1Y2 alloy

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2003.10.145

Keywords

magnesium-zinc-yttrium alloy; rapid solidification; gas atomized powder; grain boundary segregation; cellular structure

Ask authors/readers for more resources

The formation process of 6H-phase in rapidly solidified powder metallurgy (RS P/M) Mg97Zn1Y2 alloy has been investigated by transmission electron microscopy (TEM) observations. The initial microstructure of RS powder consists of equiaxed grains about 1 mum in average diameter which is surrounded by Y and Zn rich amorphous grain boundaries. The 6H-phase was observed at grain boundaries in the RS ribbon prepared at circumferential speed of 42 m/s. By lowering the circumferential speed, the 6H-phase at grain boundary in the RS ribbon changes to amorphous phase. The amount of Y and Zn segregation at the grain boundary in RS Mg97Zn1Y2 alloy increases with decreasing the cooling rate. In other words, the amorphization of grain boundary phase in RS alloy was promoted by the enrichment of Y and Zn. The growth of 6H-phase starts from grain boundary in the RS ribbon annealed at 573 K for 1.2 ks. It can be concluded that the 6H-phase in RS P/M Mg97Zn1Y2 alloy crystallizes in the Y and Zn rich amorphous phase at grain boundary and then grows into grain interior during extrusion. In order to clarify the stability of 6H-phase with heat treatment, microstructure changes in RS ribbon are also described. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available