4.7 Article

Interactions between high pressure homogenization and antimicrobial activity of lysozyme and lactoperoxidase

Journal

INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY
Volume 94, Issue 2, Pages 123-135

Publisher

ELSEVIER
DOI: 10.1016/j.ijfoodmicro.2004.01.005

Keywords

high pressure homogenization; lysozyme; lactoperoxidase; antimicrobial activity

Ask authors/readers for more resources

It was the objective of this work to evaluate the effect of high pressure homogenization on the activity of antimicrobial enzymes such as lysozyme and lactoperoxidase against a selected group of Gram positive and Gram negative species inoculated in skim milk. Lactobacillus helveticus, Lactobacillus plantarum and Listeria monocytogenes were the most pressure resistant species while Bacillus subtilis, Pseudomonas putida, Salmonella typhimurium, Staphylococcus aureus, Proteus vulgaris and Salmonella enteritidis were found to be very sensitive to the hyperbaric treatment. The enzyme addition enhanced the instantaneous pressure efficacy on almost all the considered species as indicated by their instantaneous viability loss following the treatment. Moreover, the combination of the enzyme and high pressure homogenization significantly affected the recovery and growth dynamics of several of the considered species. Although L. monocytogenes was slightly sensitive to pressure, the combination of the two stress factors induced a significant viability loss within 3 It and an extension of lag phases in skim milk during incubation at 37 degreesC. The hypothesis formulated in this work is that the interaction of high pressure homogenization and lysozyme or lactoperoxidase is associated to conformational modifications of the two proteins with a consequent enhancement of their activity. This hypothesis is supported by the experimental results also regarding the increased antimicrobial activity against L. plantarum of the previously pressurised lysozyme with respect to that of the native enzyme. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available