4.7 Article

Effect of 1.7 MHz ultrasound on a gas-vacuolate cyanobacterium and a gas-vacuole negative cyanobacterium

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 36, Issue 2, Pages 115-121

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfb.2004.06.003

Keywords

ultrasonic irradiation; cyanobacteria; lipid peroxidation; gas-vacuoles; cavatitional effects

Ask authors/readers for more resources

Ultrasonic signals propagated through medium were directly applied to unicellular cyanobacterium cell surfaces to investigate the biological effects induced by ultrasound. The gas-vacuolate cyanobacterium Microcystis aeruginosa and the gas-vacuole negative cyanobacterium Synechococcus PCC 7942 responded differently to ultrasound. When M. aeruginoso was irradiated by 1.7 MHz ultrasound at 0.6 W cm(-2) every day, it showed a decrease of nearly 65% in biomass increment, and this group's generation time increased twice as much as the control. While Synechococcus culture irradiated every day still grew as fast as the control, and its final biomass was as much as the control. The value of the electric conductivity change (Deltasigma) sharply increased in Microcystis suspension during the exposure process, which revealed more ultrasonic cavitation yield in liquid related to the gas-vacuolate cyanobacteria. The relative malondialdehyde (MDA) content, a quantitative indicator of lipid peroxidation, increased by 65% in Microcystis cells and 9% in Synechoccus cells after ultrasonic irradiation. Moreover, the membrane permeability, quantified by measuring the relative amount of electrolyte leaking out of cells, increased to more than 60% in the Microcystis cells. The results indicated that Microcystis cells were susceptible to ultrasonic stress. According to Rayleigh-Plesset's bubble activation theory, 1.7 MHz ultrasound approached the eigenfrequency of gas-vacuolate cells. The present investigation suggested the importance of the cavitational effect relative to intracellular gas-vacuoles in the loss of cell viability. In summary, 1.7 MHz ultrasonic irradiation was effective in preventing water-bloom forming cyanobacteria from growing rapidly due to changes in the functioning and integrity of cellular and subcellular structures. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available