4.8 Article

Quantum phase transitions of magnetic rotons

Journal

PHYSICAL REVIEW LETTERS
Volume 93, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.93.036405

Keywords

-

Ask authors/readers for more resources

Because of weak spin-orbit coupling and broken inversion symmetry the paramagnons of an itinerant, almost ferromagnetic system become magnetic rotons. Using self-consistent Hartree and renormalization group calculations, we study weak fluctuation-driven first-order quantum phase transitions, a quantum tricritical point controlled by anisotropy, and non-Fermi liquid behavior associated with the large phase volume of magnetic rotons. We propose that magnetic rotons are essential for the description of the anomalous high-pressure behavior of the itinerant helical ferromagnet MnSi.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available