4.7 Article

A simple approach for immobilization of gold nanoparticles on graphene oxide sheets by covalent bonding

Journal

APPLIED SURFACE SCIENCE
Volume 257, Issue 8, Pages 3350-3357

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2010.11.023

Keywords

Gold nanoparticles; Graphene oxide; Functionalization; Covalent immobilization; Hybrid material

Funding

  1. Corporate-affiliated Research Institute of Academic Industrial-Institutional Cooperation Improvement [S7080008110]

Ask authors/readers for more resources

Amino-functionalized gold nanoparticles with a diameter of around 5 nm were immobilized onto the surface of graphene oxide sheets (GOS) by covalent bonding through a simple amidation reaction. Pristine graphite was firstly oxidized and exfoliated to obtain GOS, which further were acylated with thionyl chloride to give acyl chloride bound GOS. Gold nanoparticles (AuNPs) were functionalized using 4-aminothiophenol in a single-phase system to introduce amino groups on their surface through the well-developed Au-S chemistry. Subsequently, amino groups of AuNPs were reacted with acyl chloride groups of GOS to form a novel hybrid material containingGOSand AuNPs. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy were used to study the changes in surface functionalities and demonstrate the successful immobilization of AuNPs on GOS surface. High resolution transmission electron microscopy (HR-TEM), field emission scanning electronic microscopy (FE-SEM), and atomic force microscopy (AFM) were employed to investigate the morphologies of prepared AuNPs and their distribution onto the GOS surface. Thermogravimetric analysis (TGA) was used to characterize the thermal stability of the samples on heating. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available