4.7 Article

Loop density enhancement by nonlinear magnetohydrodynamic waves

Journal

ASTROPHYSICAL JOURNAL
Volume 610, Issue 1, Pages 523-531

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/421514

Keywords

MHD; Sun : corona; Sun : magnetic fields waves

Ask authors/readers for more resources

We study the possibility that waves in coronal loops can produce density enhancements at loop tops. The mechanism involved is the ponderomotive force of standing magnetohydrodynamic (MHD) waves. We study the effect of large-amplitude waves in loops by first using a simple second-order one-dimensional MHD model for which analytical expressions are available. This simple model shows how Alfven waves can excite density fluctuations on slow timescales. Next, we solve the time-dependent nonlinear 2.5-dimensional MHD equations in an arcade model, in order to study the effect of nonuniform Alfven speed along the loop on large-amplitude waves. Finally, we solve the nonlinear three-dimensional MHD equations in a flux-tube configuration. Waves are launched by an initial transverse velocity profile in the loop, with footpoints fixed in the photosphere. We find that large initial disturbances produce a pressure imbalance along the loop, which results in an upflow from its legs. The accumulation of mass at the top of the oscillating loop can produce significant density enhancements for typical coronal conditions. In a later stage, the pressure gradient becomes dominant and inhibits the concentration of mass at the loop top. We find that oscillating loops observed by the EUV telescope on board TRACE on 1998 July 14 exhibit emission measure enhancements consistent with this mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available