4.7 Article

Overexpression of glial cell line-derived neurotrophic factor using a lentiviral vector induces time-and dose-dependent downregulation of tyrosine hydroxylase in the intact nigrostriatal dopamine system

Journal

JOURNAL OF NEUROSCIENCE
Volume 24, Issue 29, Pages 6437-6445

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1122-04.2004

Keywords

dopamine; Parkinson; downregulation; gene therapy; glial cell line-derived neurotrophic factor; intact; overexpression; Parkinson's disease; tyrosine hydroxylase

Categories

Ask authors/readers for more resources

The effects of continuous glial cell line-derived neurotrophic factor ( GDNF) overexpression in the intact nigrostriatal dopamine (DA) system was studied using recombinant lentiviral (rLV) vector delivery of GDNF to the striatum or substantia nigra (SN) in the rat. Intrastriatal delivery of rLV-GDNF resulted in significant overexpression of GDNF in the striatum (2-4 ng/mg tissue) and anterograde transport of GDNF protein to the SN. Striatal rLV-GDNF delivery initially induced an increase in DA turnover (1-6 weeks), accompanied by significant contralateral turning in response to amphetamine, suggesting an enhancement of the DA system on the injected side. Starting 6 weeks after continuous GDNF delivery, we observed a selective downregulation of tyrosine hydroxylase (TH) protein (approximate to70%) that was maintained until the end of the experiment ( 24 weeks). A similar effect was observed when rLV-GDNF was injected into the SN. The magnitude of TH downregulation was related to the level of GDNF expression and was most pronounced in animals in which the striatal GDNF level exceeded 0.7 ng/mg tissue. The decreased TH protein levels were associated with similar reductions in the in vitro TH enzyme activity (approximate to70%); however, in vivo L-3,4-dihydroxyphenylalanine production rate and DA tissue levels were maintained at normal levels. The results indicate that downregulation of TH protein reflects a compensatory effect in response to continuous GDNF stimulation of the DA neurons mediated by a combination of overactivity at the DA synapse and a direct GDNF-induced action on TH gene expression. This compensatory mechanism is proposed to maintain long-term DA neuron function within the normal range.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available