4.8 Article

Preparing high purity initial states for nuclear magnetic resonance quantum computing

Journal

PHYSICAL REVIEW LETTERS
Volume 93, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.93.040501

Keywords

-

Ask authors/readers for more resources

Here we demonstrate how parahydrogen can be used to prepare a two-spin system in an almost pure state which is suitable for implementing nuclear magnetic resonance quantum computation. A 12 ns laser pulse is used to initiate a chemical reaction involving pure parahydrogen (the nuclear spin singlet of H-2). The product, formed on the mus time scale, contains a hydrogen-derived two-spin system with an effective spin-state purity of 0.916. To achieve a comparable result by direct cooling would require an unmanageable (in the liquid state) temperature of 6.4 mK or an impractical magnetic field of 0.45 MT at room temperature. The resulting spin state has an entanglement of formation of 0.822 and cannot be described by local hidden variable models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available