4.7 Article

Kinetics, equilibrium and thermodynamics of the sorption of tetrabromobisphenol A on multiwalled carbon nanotubes

Journal

APPLIED SURFACE SCIENCE
Volume 256, Issue 23, Pages 7246-7252

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2010.05.059

Keywords

Sorption; Thermodynamic; Tetrabromobisphenol A; Carbon nanotube; Flame retardants

Funding

  1. Research/Hashemite University

Ask authors/readers for more resources

Tetrabromobisphenol A (TBBPA) is widely used as a flame retardant and is relatively persistent in the environment. This study reports the sorption kinetics, equilibrium and thermodynamics of TBBPA on multiwalled carbon nanotubes (MWCNTs). The equilibrium sorption capacity has been significantly improved by increasing the initial TBBPA concentration and contact time. In alkaline conditions and at high temperatures, a large reduction of TBBPA uptake was observed. The equilibrium between TBBPA and MWCNTs was achieved in approximately 60 min with removal of 96% of the TBBPA. The sorption kinetics were well described by a pseudo-second-order rate model, while both Langmuir and Freundlich models described the sorption isotherms well at different temperatures. Thermodynamic parameters suggested that the sorption of TBBPA is exothermic and spontaneous at the temperatures studied. (C) 2010 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available