4.6 Article

Trapping metallic Rayleigh particles with radial polarization

Journal

OPTICS EXPRESS
Volume 12, Issue 15, Pages 3377-3382

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OPEX.12.003377

Keywords

-

Categories

Ask authors/readers for more resources

Metallic particles are generally considered difficult to trap due to strong scattering and absorption forces. In this paper, numerical studies show that optical tweezers using radial polarization can stably trap metallic particles in 3-dimension. The extremely strong axial component of a highly focused radially polarized beam provides a large gradient force. Meanwhile, this strong axial field component does not contribute to the Poynting vector along the optical axis. Consequently, it does not create axial scattering/absorption forces. Owing to the spatial separation of the gradient force and scattering/absorption forces, a stable 3-D optical trap for metallic particles can be formed. (C) 2004 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available