4.8 Article

The C. elegans thermosensory neuron AFD responds to warming

Journal

CURRENT BIOLOGY
Volume 14, Issue 14, Pages 1291-1295

Publisher

CELL PRESS
DOI: 10.1016/j.cub.2004.06.060

Keywords

-

Ask authors/readers for more resources

The mechanism of temperature sensation is far less understood than the sensory response to other environmental stimuli such as light, odor, and taste. Thermotaxis behavior in C. elegans requires the ability to discriminate temperature differences as small as similar to0.05degreesC and to memorize the previously cultivated temperature [1, 2]. The AFD neuron is the only major thermosensory neuron required for the thermotaxis behavior [3]. Genetic analyses have revealed several signal transduction molecules that are required for the sensation and/or memory of temperature information in the AFD neuron [4-7], but its physiological properties, such as its ability to sense absolute temperature or temperature change, have been unclear. We show here that the AFD neuron responds to warming. Calcium concentration in the cell body of AFD neuron is increased transiently in response to warming, but not to absolute temperature or to cooling. The transient response requires the activity of the TAX-4 cGMP-gated cation channel, which plays an essential role in the function of the AFD neuron [5]. Interestingly, the AFD neuron further responds to step-like warming above a threshold that is set by temperature memory. We suggest that C. elegans provides an ideal model to genetically and physiologically reveal the molecular mechanism for sensation and memory of temperature information.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available