4.5 Article

Biochemical engineering of the N-acyl side chain of sialic acid leads to increased calcium influx from intracellular compartments and promotes differentiation of HL60 cells

Journal

FEBS LETTERS
Volume 571, Issue 1-3, Pages 99-102

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.febslet.2004.06.067

Keywords

cell adhesion; sialic acid; signal transduction; calcium; galectin-3

Ask authors/readers for more resources

Sialylation of glycoconjugates is essential for mammalian cells. Sialic acid is synthesized in the cytosol from N-acetylmannosamine by several consecutive steps. Using N-propanoylmannosamine, a novel precursor of sialic acid, we are able to incorporate unnatural sialic acids with a prolonged N-acyl side chain (e.g., N-propanoylneuraminic acid) into glycoconjugates taking advance of the cellular sialylation machinery. Here, we report that unnatural sialylation of HL60-cells leads to an increased release of intracellular calcium after application of thapsigargin, an inhibitor of SERCA Ca2+-ATPases. Furthermore, this increased intracellular calcium concentration leads to an increased adhesion to fibronectin. Finally, we observed an increase of the lectin galectin-3, a marker of monocytic differentiation of HL60-cells. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available