4.5 Article

Numerical study of the instability mechanism in transitional separating-reattaching flow

Journal

INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW
Volume 25, Issue 4, Pages 593-605

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ijheatfluidflow.2004.01.004

Keywords

large-eddy simulation; separated boundary layer transition; instability

Ask authors/readers for more resources

Laminar separated flows are known to become unstable at relatively low Reynolds numbers. As a result, both the mean and instantaneous flow patterns are highly influenced by instabilities leading to transition to turbulence. Large-Eddy Simulation (LES) is employed to investigate the primary and secondary instabilities of a separated boundary layer transition on a flat plate with a blunt leading edge. The Reynolds number based on the uniform inlet velocity and the plate thickness is 6500. A dynamic subgrid-scale model is employed to compute the subgrid-scale stresses more accurately in the transitional flow case. Statistics of the LES are found to be in acceptable agreement with the available experimental data. Based on the characteristic frequency from the velocity and pressure spectra, the LES results confirm that transition starts with the primary 2D instability originating from the free shear in the bubble as the free shear layer is inviscidly unstable via the Kelvin-Helmholtz mechanism. The flow visualisation together with the spectral analysis for the velocity components and pressure give strong indication of the dominance of the helical-pairing instability which could be mainly responsible for the breakdown to turbulence. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available