4.2 Article

Meiosis induced by inactivation of Pat1 kinase proceeds with aberrant nuclear positioning of centromeres in the fission yeast Schizosaccharomyces pombe

Journal

GENES TO CELLS
Volume 9, Issue 8, Pages 671-684

Publisher

WILEY
DOI: 10.1111/j.1356-9597.2004.00760.x

Keywords

-

Ask authors/readers for more resources

Nuclear organization of chromosomes proceeds with significant changes during meiosis. In the fission yeast Schizosaccharomyces pombe, centromeres are clustered at the spindle-pole body (SPB) during the mitotic cell cycle; however, during meiotic prophase telomeres become clustered to the SPB and centromeres dissociate from the SPB. We followed the movement of telomeres, centromeres and sister chromatids in living S. pombe cells that were induced to meiosis by inactivation of Pat1 kinase (a key negative regulator of meiosis). Time-course observation in living cells determined the temporal order of DNA synthesis, telomere clustering, centromere separation and meiotic chromosome segregation. When meiosis was induced by Pat1 inactivation at the G1 phase of mitosis, telomeres clustered to the SPB as per normal meiosis, but in most cells the centromeres remained partially associated with the SPB. When meiosis was initiated at the G2 phase by Pat1 inactivation, both telomeres and centromeres retained their mitotic nuclear positions in the majority of cells. These results indicate that the progression of meiosis induced by Pat1 inactivation is aberrant from normal meiosis in some events. As Pat1 inactivation is often useful to induce S. pombe cells synchronously into meiosis, the temporal order of chromosomal events determined here will provide landmarks for the progression of meiosis downstream the Pat1 inactivation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available