3.8 Article Proceedings Paper

Heat transfer capacity of lotus-type porous copper heat sink

Publisher

JAPAN SOC MECHANICAL ENGINEERS
DOI: 10.1299/jsmeb.47.516

Keywords

porous media; lotus-type porous copper; fin efficiency; heat transfer capacity; heat sink

Ask authors/readers for more resources

Lotus-type porous copper is a form of copper that includes many straight pores, which are produced by the precipitation of supersaturated gas dissolved in the molten metal during solidification. The lotus-type porous copper is attractive as a heat sink because a higher heat transfer capacity is obtained as the pore diameter decreases. We investigate a fin model for predicting the heat transfer capacity of the lotus-type porous copper. Its heat transfer capacity is verified to be predictable via the straight fin model, in which heat conduction in the porous metal and the heat transfer to the fluid in the pores are taken into consideration by comparison with a numerical analysis. We both experimentally and analytically determine the heat transfer capacities of three types of heat sink: with conventional groove fins, with groove fins that have a smaller fin gap (micro-channels) and with lotus-type porous copper fins. The conventional groove fins have a fin gap of 3 mm and a fin thickness of 1 mm, the micro-channels have a fin gap of 0.5 mm and a fin thickness of 0.5 mm, and the lotus-type porous copper fins have pores with a diameter of 0.3 mm and a porosity of 0.39. The lotus-type porous copper fins were found to have a heat transfer capacity 4 times greater than the conventional groove fins and 1.3 times greater than the micro-channel heat sink under the same pumping power.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available