4.7 Article

Severe persistent hyperinsulinemic hypoglycemia due to a de novo glucokinase mutation

Journal

DIABETES
Volume 53, Issue 8, Pages 2164-2168

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.53.8.2164

Keywords

-

Ask authors/readers for more resources

Glucokinase (GK) is a glycolytic key enzyme that functions as a glucose sensor in the pancreatic P-cell, where it governs glucose-stimulated insulin secretion (GSIS). Heterozygous inactivating mutations in the glucokinase gene (GCK) cause a mild form of diabetes (maturity-onset diabetes of the young [MODY]2), and activating mutations have been associated with a mild form of familial hyperinsulinemic hypoglycemia. We describe the first case of severe persistent hyperinsulinemic hypoglycemia due to a de novo mutation in GCK (Y214C). A baby girl presented with hypoglycemic seizures since the first postnatal day as well as with inappropriate hyperinsulinemia. Severe hypoglycemia persisted even after treatment with diazoxide and subtotal pancreatectomy, leading to irreversible brain damage. Pancreatic histology revealed abnormally large and hyperfunctional islets. The mutation is located in the putative allosteric activator domain of the protein. Functional studies of purified recombinant glutathionyl Stransferase fusion protein of GK-Y214C showed a sixfold increase in its affinity for glucose, a lowered cooperativity, and increased k(cat). The relative activity index of GK-Y214C was 130, and the threshold for GSIS predicted by mathematical modeling was 0.8 mmol/l, compared with 5 mmol/l in the wild-type enzyme. In conclusion, we have identified a de novo GCK activating mutation that causes hyperinsulinemic hypoglycemia of exceptional severity. These findings demonstrate that the range of the clinical phenotype caused by GCK mutations varies from complete insulin deficiency to extreme hyperinsulinemia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available