4.7 Article

Synthesis of narrow band gap (V2O5)x-(TiO2)1-x nano-structured layers via micro arc oxidation

Journal

APPLIED SURFACE SCIENCE
Volume 256, Issue 9, Pages 2903-2909

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2009.11.048

Keywords

Titanium oxide; Vanadium oxide; Micro arc oxidation; Ceramics; Photo-catalysis

Ask authors/readers for more resources

V2O5-TiO2 layers with a sheet-like morphology were synthesized by micro arc oxidation process for the first time. Surface morphology and topography of the layers were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM). Phase structure and chemical composition of the layers were also studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. It was revealed that the composite layers had a sheet-like structure average thickness of which was about 100 nm depending on the applied voltage. The layers consisted of anatase, rutile, and vanadium pentoxide phases fractions of which varied with the applied voltage. The optical properties of the layers were also examined employing a UV-vis spectrophotometer. It was found that the absorption edge of the grown composite layers shifted toward the visible wavelengths when compared to MAO-synthesized pure titania layers. The band gap energy of the composite layers was calculated as 2.58 eV. Furthermore, photo-catalytic performance of the layers was examined by measuring the decomposition rate of methylene blue under ultraviolet and visible irradiations. The results demonstrated that about 90% and 68% of methylene blue solution was decomposed after 120 min ultraviolet and visible irradiations over the composite layers, respectively. (C) 2009 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available