4.7 Article

Utilization of light scattering in transmission laser welding of medical devices

Journal

APPLIED SURFACE SCIENCE
Volume 256, Issue 3, Pages 900-908

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2009.08.082

Keywords

Polymer; Laser welding; Interface; Joining; Light scattering

Ask authors/readers for more resources

This paper reports on optimization of material parameters in transmission laser welding of polymers including light absorption, light scattering and the thermal properties of the polymers. A criterion for making an optimized transmission laser weld between a transparent polymer part and an absorbing and scattering polymer part is formulated as a required thickness of the melt-zone in the transparent part with a corresponding minimum-line-energy-for-welding (MLEW). Experimental data of MLEW are presented for a medical device application involving joining polyethylene-octene parts for various concentrations of near-infrared absorber and titanium dioxide light scattering particles. Numerical and analytical models yield good agreement to the experimental data and enable optimization of the transmission laser welding process. By utilization of light scattering, the laser line-energy required for joining two polymer parts can be reduced by a factor up to three, enabling a corresponding reduction of the cycle time in the manufacturing process. (C) 2009 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available