4.4 Review

Integrating transcriptional and signalling networks during muscle development

Journal

CURRENT OPINION IN GENETICS & DEVELOPMENT
Volume 14, Issue 4, Pages 343-350

Publisher

CURRENT BIOLOGY LTD
DOI: 10.1016/j.gde.2004.06.011

Keywords

-

Ask authors/readers for more resources

A fundamental aspect of developmental decisions is the ability of groups of cells to obtain the competence to respond to different signalling inputs. This information is often integrated with intrinsic transcriptional networks to produce diverse developmental outcomes. Studies in Drosophila are starting to reveal a detailed picture of the regulatory circuits controlling the subdivision of the dorsal mesoderm, which gives rise to diverse muscle types including cardioblasts, pericardial cells, body wall muscle and gut muscle. The combination of a common set of mesoderm autonomous transcription factors (e.g. Tinman and Twist) and spatially restricted inductive signals (e.g. Dpp and Wg) subdivide the dorsal mesoderm into different competence domains. The integration of additional signalling inputs with localised repression within these competence domains results in diverse transcriptional responses within neighbouring cells, which in turn generates muscle diversity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available