4.7 Article

Long-term tillage system effects under moist cool conditions in Switzerland

Journal

SOIL & TILLAGE RESEARCH
Volume 78, Issue 2, Pages 171-183

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.still.2004.02.005

Keywords

tillage; mouldboard plough; chisel; yield; soil organic carbon; preconsolidation stress; mycorrhiza; soil quality indicators; Switzerland

Categories

Ask authors/readers for more resources

How do different soil tillage systems influence soil quality over the years? Under moist cool conditions is it possible in the long term to reduce dramatically soil tillage intensity without experiencing reductions in yield or other problems? In 1987, the Swiss Federal Research Station for Agricultural Economics and Engineering in Tanikon initiated a long-term soil tillage trial to clarify these questions. The trial compared mouldboard plough, chisel, paraplow, shallow tillage and no-tillage systems on a well-drained Orthic Luvisol with 160 g kg(-1) clay, 310 g kg(-1) silt, and under a climate that has a mean annual precipitation of 1180 mm. The tillage treatment effects were evaluated by measuring several biological, chemical, and physical soil quality indicators. Reduced soil tillage increased earthworm populations, reduced Pseudocercosporella herpotrichoides infection in wheat (Triticum aestivum) and increased plant colonisation by arbuscular mycorrhizal fungi. Yields for no-tillage and other ploughless cultivation techniques were on par with those obtained by ploughing. An exception was direct-drilled maize (Zea mays), where no-tillage decreased yield by more than 10% over the course of 14 years. In the first 7 years of the trial, the level of soil organic carbon in all the tillage regimes was approximately 40% lower than natural grassland (initial situation 1987 = 75 Mg SOC ha(-1)). The no-tillage method did not differ from the others in respect of bulk density, but it showed an increased preconsolidation stress and hence better trafficability. Under Switzerland's moist cool climatic conditions, it is possible to reduce soil tillage intensity without substantial reductions in yield, and at the same time improve soil quality. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available