4.3 Article

A liquid desiccant system for solar cooling and dehumidification

Journal

Publisher

ASME
DOI: 10.1115/1.1690284

Keywords

dehumidifier; evaporator; regenerator; absorber; cooling; dehumidification; air conditioning

Ask authors/readers for more resources

The growing demand for air conditioning, particularly in hot and humid climates has caused a significant increase in demand for energy resources. A promising solar technology with potential to alleviate the problem is an open absorption system, where humidity is absorbed directly from the air to be treated by direct contact with the absorbent. The absorbent is then regenerated, again in direct contact with an external air stream, at relatively low temperatures of the heat source. The paper describes a study of a liquid desiccant cooling system designed to air-condition a group of offices on the top floor of a building in the Mediterranean city of Haifa, Israel. The system is capable of using as its source of power low-grade solar heat, of the type obtainable from low-cost flat plate collectors, and has a potential to provide both cooling and dehumidification in variable ratios, as required by the load. Several cycle variations have been considered, corresponding to different design options. A parametric study shows that entrance conditions of the ambient air significantly affect the heat and mass transfer occurring during the dehumidification process. The temperatures and flow rates of the heating and cooling water and the flow rates of solution through the dehumidifier and regenerator affect the humidity of the supply air delivered to the conditioned space, and show an optimum in certain cases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available