4.5 Article

Muscles that influence knee flexion velocity in double support: implications for stiff-knee gait

Journal

JOURNAL OF BIOMECHANICS
Volume 37, Issue 8, Pages 1189-1196

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2003.12.005

Keywords

stiff-knee gait; dynamic simulation; cerebral palsy; muscle; knee

Funding

  1. NICHD NIH HHS [R01-HD38962] Funding Source: Medline

Ask authors/readers for more resources

Adequate knee flexion velocity at toe-off is important for achieving normal swing-phase knee flexion during gait. Consequently, insufficient knee flexion velocity at toe-off can contribute to stiff-knee gait, a movement abnormality in which swing-phase knee flexion is diminished. This work aims to identify the muscles that contribute to knee flexion velocity during double support in normal gait and the muscles that have the most potential to alter this velocity. This objective was achieved by perturbing the forces generated by individual muscles during double support in a forward dynamic simulation of normal gait and observing the effects of the perturbations on peak knee flexion velocity. Iliopsoas and gastrocnemius were identified as the muscles that contribute most to increasing knee flexion velocity during double support. Increased forces in vasti, rectus femoris, and soleus were found to decrease knee flexion velocity. Vasti, rectus femoris, gastrocnemius, and iliopsoas were all found to have large potentials to influence peak knee flexion velocity during double support. The results of this work indicate which muscles likely contribute to the diminished knee flexion velocity at toe-off observed in stiff-knee gait, and identify the treatment strategies that have the most potential to increase this velocity in persons with stiff-knee gait. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available