4.7 Article

Influence of fracture process zone height on fracture energy of concrete

Journal

CEMENT AND CONCRETE RESEARCH
Volume 34, Issue 8, Pages 1321-1330

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cemconres.2003.12.027

Keywords

fracture energy; size effect; boundary effect; ligament effect; fracture process zone

Ask authors/readers for more resources

The implication of modelling concrete fracture with a fictitious crack of zero fracture process zone (FPZ) height is addressed because FPZ height, in reality, is not zero and is bound to vary during crack growth. The ligament effect on fracture energy G(F) is explained by the nonuniform distribution of a local fracture energy gf showing the influence of specimen boundary and variation of FPZ height. The nonuniform g(f) distribution is then used to determine the size-independent G(F). The recent boundary-effect model based on a bilinear g(f) function is confirmed by the essential work of fracture (EWF) model for the yielding of deeply notched polymer and metal specimens. The EWF model provides a theoretical basis for the bilinear g(f) distribution. The principal rationale of the boundary-effect model, the influence of FPZ height on fracture energy, is supported by experimental observations of thickness effect on fracture toughness of thin polymeric adhesives between metals. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available