4.7 Article Proceedings Paper

Biomineralization of As(V)-hydrous ferric oxyhydroxide in microbial mats of an acid-sulfate-chloride geothermal spring, Yellowstone National Park

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 68, Issue 15, Pages 3141-3155

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2003.09.020

Keywords

-

Ask authors/readers for more resources

Acid-sulfate-chloride (pHsimilar to3) geothermal springs in Yellowstone National Park (YNP) often contain Fe(II), As(III), and S(41) at discharge, providing several electron donors for chemolithotrophic metabolism. The microbial populations inhabiting these environments are inextricably linked with geochemical processes controlling the behavior of As and Fe. Consequently, the objectives of the current study were to (i) characterize Fe-rich microbial mats of an ASC thermal spring, (ii) evaluate the composition and structure of As-rich hydrous ferric oxides (HFO) associated with these mats, and (iii) identify microorganisms that are potentially responsible for mat formation via the oxidation of Fe(II) and or As(III). Aqueous and solid phase mat samples obtained from a spring in Norris Basin, YNP (YNP Thermal Inventory NHSP35) were analyzed using a complement of chemical, microscopic and spectroscopic techniques. In addition, molecular analysis (16S rDNA) was used to identify potentially dominant microbial populations within different mat locations. The biomineralization of As-rich HFO occurs in the presence of nearly equimolar aqueous As(III) and As(V) (similar to12 muM), and similar to 48 muM Fe(II), forming sheaths external to microbial cell walls. These solid phases were found to be poorly ordered nanocrystalline HFO containing mole ratios of As(V):Fe(III) of 0.62 +/- 0.02. The bonding environment of As(V) and Fe(III) is consistent with adsorption of arsenate on edge and corner positions of Fe(III)-OH octahedra. Numerous archaeal and bacterial sequences were identified (with no closely related cultured relatives), along with several 16S sequences that are closely related to Acidimicrobium, Thiomonas, Metallosphaera and Marinithermus isolates. Several of these cultured relatives have been implicated in Fe(II) and or As(III) oxidation in other low pH, high Fe, and high As environments (e.g. acid-mine drainage). The unique composition and morphologies of the biomineralized phases may be useful as modem-day analogs for identifying microbial life in past Fe-As rich environments. Copyright (C) 2004 Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available