4.7 Article

Dopaminergic regulation of immune cells via D3 dopamine receptor:: a pathway mediated by activated T cells

Journal

FASEB JOURNAL
Volume 18, Issue 11, Pages -

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.04-1652fje

Keywords

blood brain barrier; CNS; cytokines; neurotransmitter; schizophrenia

Ask authors/readers for more resources

Neuro-immune interactions enable mutual regulation of the nervous and immune systems. To date, evidence exists for manipulations of immune cells by neurotransmitters in the periphery. In this study, we suggest the existence of a pathway by which the brain affects immune cells. The pathway we describe here is mediated by dopamine receptors expressed on activated T cells, termed blasts. Blasts can cross the blood brain barrier regardless of antigen specificity and can therefore encounter neurotransmitters in the brain. We show that blasts have a unique response to dopaminergic activation, which has no counterpart in resting T cells. Dopaminergic activation of blasts induces a Th1 bias in their cytokine profile and causes changes in surface marker expression. We further suggest that these changes can subsequently be transferred to peripheral T cells. We have tested this pathway in two in vivo systems: in rats exogenously administered with L-dopa, and in schizophrenia, which is characterized by a central nervous system-restricted increase in dopamine. In both models, peripheral T cells exhibit similar features to those of dopaminergically activated blasts. The existence of such a pathway by which the brain can regulate immune cells opens a conceptually new direction in neuro-immune interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available