4.5 Article

Structural basis for Ca2+-induced activation of human PAD4

Journal

NATURE STRUCTURAL & MOLECULAR BIOLOGY
Volume 11, Issue 8, Pages 777-783

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nsmb799

Keywords

-

Ask authors/readers for more resources

Peptidylarginine deiminase 4 (PAD4) is a Ca2+-dependent enzyme that catalyzes the conversion of protein arginine residues to citrulline. Its gene is a susceptibility locus for rheumatoid arthritis. Here we present the crystal structure of Ca2+-free wild-type PAD4, which shows that the polypeptide chain adopts an elongated fold in which the N-terminal domain forms two immunoglobulin-like subdomains, and the C-terminal domain forms an alpha/beta propeller structure. Five Ca2+-binding sites, none of which adopt an EF-hand motif, were identified in the structure of a Ca2+-bound inactive mutant with and without bound substrate. These structural data indicate that Ca2+ binding induces conformational changes that generate the active site cleft. Our findings identify a novel mechanism for enzyme activation by Ca2+ ions, and are important for understanding the mechanism of protein citrullination and for developing PAD-inhibiting drugs for the treatment of rheumatoid arthritis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available