4.7 Article

Ultrasonic assessment of rough surface contact between solids from elastoplastic loading-unloading hysteresis cycle

Journal

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
Volume 52, Issue 8, Pages 1911-1934

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2004.01.006

Keywords

elastoplastic contact; ultrasonic waves; contact stiffness; imperfect interface

Ask authors/readers for more resources

An ultrasonic method to characterize the elastoplastic contact between two rough surfaces is presented. Ultrasonic experiments are performed on three different interfaces formed by aluminum surfaces with different levels of roughness. The frequency-dependent ultrasonic reflection coefficient from the interface is measured during loading and unloading cycles as a function of pressure, from which the ultrasonic interfacial contact stiffness is reconstructed by the least-squares inversion procedure. It is shown that one should distinguish between the ultrasonic (dynamic) interfacial stiffness and static interfacial stiffness for rough surfaces in elastoplastic contact (they are identical for purely elastic contact). It is shown that ultrasonic stiffness is associated with local unloading stiffness. An elastoplastic micromechanical model is used to describe the plasticity-induced hysteresis in the ultrasonically measured interfacial stiffness during loading-unloading cycles. The topographic parameters of the interface contact are reconstructed by matching the model-predicted results with the experimentally determined ultrasonic stiffness. Using these parameters the real area of contact, which is not directly measurable, is predicted during loading-unloading cycles using the model. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available