4.5 Article

Suppression of tumor metastasis by NK4 plasmid DNA released from cationized gelatin

Journal

GENE THERAPY
Volume 11, Issue 15, Pages 1205-1214

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.gt.3302285

Keywords

controlled release; cationized gelatin microspheres; NK4; tumor metastasis

Ask authors/readers for more resources

NK4, composed of the NH2-terminal hairpin and subsequent four-kringle domains of hepatocyte growth factor (HGF), acts as an HGF-antagonist and angiogenesis inhibitor. This study is an investigation to evaluate the feasibility of controlled release formulation of NK4 plasmid DNA in suppressing the tumor growth, and lung metastasis. Biodegradable cationized gelatin microspheres were prepared for the controlled release of an NK4 plasmid DNA. The cationized gelatin microspheres incorporating NK4 plasmid DNA could continuously release plasmid DNA over 28 days as a result of microspheres degradation following the subcutaneous injection. The injection of cationized gelatin microspheres incorporating NK4 plasmid DNA into the subcutaneous tissue significantly prolonged the survival time period of the mice bearing Lewis lung carcinoma tumor. Increases in the tumor volume and the number of lung metastatic nodules of NK4 plasmid DNA release group were suppressed to a significantly greater extent than that of solution-injected group (77.4 and 64.0%, respectively). The number of blood vessels and the apoptosis cells in the tumor tissue were significantly suppressed (80.4%) and increased (127.3%) against free NK4 plasmid DNA-injected group. Thus, the controlled release of NK4 plasmid DNA augmented angiogenesis suppression and apoptosis of tumor cells, which resulted in suppressed tumor growth. We conclude that this controlled release technology is promising to enhance the tumor suppression achieved by gene expression of NK4.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available