4.7 Article

Influence of atmospheric pressure plasma treatment time on penetration depth of surface modification into fabric

Journal

APPLIED SURFACE SCIENCE
Volume 254, Issue 8, Pages 2499-2505

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2007.09.074

Keywords

atmospheric pressure plasma; penetration depth; polyester fabric; water-absorption time; capillary flow height

Ask authors/readers for more resources

In order to determine the relationship between the treatment duration of atmospheric pressure plasma jet (APPJ) and the penetration depth of the surface modification into textile structures, a four-layer stack of polyester woven fabrics was exposed to helium/oxygen APPJ for different treatment durations. The water-absorption time for the top and the bottom sides of each fabric layer was reduced from 200 s to almost 0 s. The capillary flow height for all fabric layers in the stack increased linearly with the treatment duration but the rate of increasing reduced linearly with the fabric layer number. A model for the capillary flow height as a function of treatment duration and the layer number was established based on the experimental data and the maximum penetration depth of the APPJ was predicted for the polyester fabric. The improved wettability of the fabrics was attributed to the enhanced surface roughness due to plasma etching and the surface chemical composition change due to plasma-induced chemical reaction as detected by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The surface roughness and the surface chemical composition change diminished as the fabric layer number increased. (c) 2007 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available