4.6 Article

Hepatitis C virus infection activates the immunologic (type II) isoform of nitric oxide synthase and thereby enhances DNA damage and mutations of cellular genes

Journal

JOURNAL OF VIROLOGY
Volume 78, Issue 16, Pages 8835-8843

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.78.16.8835-8843.2004

Keywords

-

Categories

Funding

  1. NCI NIH HHS [CA 108302, R01 CA108302] Funding Source: Medline
  2. NIAID NIH HHS [N01AI40038, AI 40038] Funding Source: Medline

Ask authors/readers for more resources

Hepatitis C virus (HCV) infection causes hepatitis, hepatocellular carcinoma, and B-cell lymphomas in a significant number of patients. Previously we have shown that HCV infection causes double-stranded DNA breaks and enhances the mutation frequency of cellular genes, including proto-oncogenes and immunoglobulin genes. To determine the mechanisms, we studied in vitro HCV infection of cell culture. Here we report that HCV infection activated the immunologic (type II) isoform of nitric oxide (NO) synthase (NOS), i.e., inducible NOS (iNOS), thereby inducing NO, which in turn induced DNA breaks and enhanced the mutation frequencies of cellular genes. Treatment of HCV-infected cells with NOS inhibitors or small interfering RNA specific for iNOS abolished most of these effects. Expression of the core protein or nonstructural protein 3 (NS3), but not the other viral proteins, in B cells or hepatocytes induced iNOS and DNA breaks, which could be blocked by NOS inhibitors. The core protein also enhanced the mutation frequency of cellular genes in hepatocytes derived from HCV core transgenic mice compared with that in control mice. The iNOS promoter was activated more than fivefold in HCV-infected cells, as revealed by a luciferase reporter assay driven by the iNOS promoter. Similarly, the core and NS3 proteins also induced the same effects. Therefore, we conclude that HCV infection can stimulate the production of NO through activation of the gene for iNOS by the viral core and NS3 proteins. NO causes DNA breaks and enhances DNA mutation. This sequence of events provides a mechanism for HCV pathogenesis and oncogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available