4.4 Article

Structural genomics on membrane proteins: Mini review

Journal

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1386207043328634

Keywords

structural genomics; membrane proteins; expression; purification; crystallisation

Ask authors/readers for more resources

Structural genomics, structure-based analysis of gene products, has so far mainly concentrated on soluble proteins because of their less demanding requirements for overexpression, purification and crystallisation compared to membrane proteins. This so-called low-hanging fruit approach has generated more than 25,000 structures deposited in databases. In contrast, the substantially more complex membrane proteins, in relation to all steps from overexpression to high-resolution structure determination, represent less than 1% of available crystal structures. This is in sharp contrast to the importance of this type of proteins, particularly G protein-coupled receptors (GPCRs), as today 60-70% of the current drug targets are based on membrane proteins. The key to improved success with membrane protein structural elucidation is technology development. The most efficient approach constitutes parallel studies on a large number of targets and evaluation of various systems for expression. Next, high throughput format solubilisation and refolding screening methods for a wide range of detergents and additives in numerous concentrations should be established. Today, several networks dealing with structural genomics approaches of membrane proteins have been initiated, among them the Membrane Protein Network (MePNet) programme that deals with the pharmaceutically important mammalian GPCRs. In MePNet, three overexpression systems have been employed for the evaluation of 101 GPCRs, which has generated large quantities of numerous recombinant GPCRs, compatible for structural biology applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available