4.7 Article

Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light

Journal

APPLIED SURFACE SCIENCE
Volume 254, Issue 10, Pages 3033-3038

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2007.10.065

Keywords

fluorine-doped; photocatalysis; low-temperature; recycle

Ask authors/readers for more resources

A novel and simple method for preparing F-doped anatase TiO2 (defined as FTO) film with high photocatalytic activity was developed using titanium-n-butoxide and NH4F as TiO2 and fluorine precursors under mild condition, i.e. low temperature (lower than 373 K) and ambient pressure. The prepared samples were characterized by XRD, SEM, X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectrum (DRS), photoluminescence spectrum (PL) and TG-DSC analysis. The photocatalytic activity was evaluated by decomposing X-3B under artificial solar light. The results showed that the crystallinity of TiO2 was improved by F-doping. F- ions can prevent the grain growth, and the transformation of anatase to rutile phase was also inhibited. The doped fluorine atoms existed in two chemical forms, and the ones incorporated into TiO2 lattice might take a positive role in photocatalysis. Compared with surface fluorination samples, FTO film exhibited better photocatalytic activity. The high photocatalytic activity of FTO may due to extrinsic absorption through the creation of oxygen vacancies rather than the excitation of the intrinsic absorption band of bulk TiO2. Furthermore, the FTO can be recycled with little photocatalytic activity depression. Without any further treatment besides rinsing, after 6 recycle utilization, the photocatalytic activity of FTO film was still higher than 79%. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available