4.6 Article

Propagation of sound in a Bose-Einstein condensate in an optical lattice -: art. no. 023609

Journal

PHYSICAL REVIEW A
Volume 70, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.70.023609

Keywords

-

Ask authors/readers for more resources

We study the propagation of sound waves in a Bose-Einstein condensate trapped in a one-dimensional optical lattice. We find that the velocity of the propagation of sound wave packets decreases with increasing optical lattice depth, as predicted by the Bogoliubov theory. The strong interplay between nonlinearities and the periodicity of the external potential generates phenomena that are not present in the uniform case. Shock waves, for instance, can propagate slower than sound waves, due to the negative curvature of the dispersion relation. Moreover, nonlinear corrections to the Bogoliubov theory appear to be important even with very small density perturbations, inducing a saturation of the amplitude of the sound signal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available