4.2 Article

NblA is essential for phycobilisome degradation in Anabaena sp strain PCC 7120 but not for development of functional heterocysts

Journal

MICROBIOLOGY-SGM
Volume 150, Issue -, Pages 2739-2749

Publisher

MICROBIOLOGY SOC
DOI: 10.1099/mic.0.27153-0

Keywords

-

Categories

Ask authors/readers for more resources

Phycobilisomes (PBS) are the major light-harvesting complexes of cyanobacteria. These usually blue-coloured multiprotein assemblies are rapidly degraded when the organisms are starved for combined nitrogen. This proteolytic process causes a colour change of the cyanobacterial cells from blue-green to yellow-green ('bleaching'). As is well documented for the unicellular, non-diazotrophic cyanobacteria Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803, a gene termed nblA plays a key role in PBS degradation. Filamentous, diazotrophic cyanobacteria like Anabaena adapt to nitrogen deprivation by differentiation of N-2-fixing heterocysts. However, during the first hours after nitrogen deprivation all cells degrade their PBS. When heterocysts mature and nitrogenase becomes active, vegetative cells resynthesize their light-harvesting complexes while in heterocysts the phycobiliprotein content remains very low. Expression and function of nblA in Anabaena sp. PCC 7120 was investigated. This strain has two nblA homologous genes, one on the chromosome (nblA) and one on plasmid delta (nblA-p). Northern blot analysis indicated that only the chromosomal nblA gene is up-regulated upon nitrogen starvation. Mutants with interrupted nblA and nblA-p genes, respectively, grew on N-2 and developed functional heterocysts. Mutant DeltanblA-p behaved like the wild-type. However, mutant DeltanblA was unable to degrade its PBS, which was most obvious in non-bleaching heterocysts. The results show that NblA, encoded by the chromosomal nblA gene, is required for PBS degradation in Anabaena but is not essential for heterocyst differentiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available