4.7 Article

Perineuronal nets potentially protect against oxidative stress

Journal

EXPERIMENTAL NEUROLOGY
Volume 188, Issue 2, Pages 309-315

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2004.04.017

Keywords

perineuronal net; lipofuscin; oxidative stress; human cerebral cortex; Alzheimer's disease

Categories

Ask authors/readers for more resources

A specialized form of extracellular matrix (ECM) termed perineuronal nets (PNs) consisting of large aggregating chondroitin sulfate proteoglycans (CSPGs), with hyaluronan and tenascin as main components, surrounds subpopulations of neurons. The glycosaminoglycan components of perineuronal nets form highly charged structures in the direct microenvironment of neurons and thus might be involved in local ion homeostasis. The polyanionic character suggests that perineuronal nets also potentially contribute to reduce the local oxidative potential in the neuronal microenviromment by scavenging and binding redox-active iron, thus providing some neuroprotection to net-associated neurons. Here, we show that neurons ensheathed by a perineuronal net in the human cerebral cortex are less frequently affected by lipofuscin accumulation than neurons without a net both in normal-aged brain and Alzheimer's disease (AD). As lipofuscin is an intralysosomal pigment composed of cross-linked proteins and lipids generated by iron-catalyzed oxidative processes, the present results suggest a neuroprotective function of perineuronal nets against oxidative stress, potentially involved in neurodegeneration. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available