4.5 Article

Behavior of α-, β-, and γ-cyclodextrins and their derivatives on an in vitro model of blood-brain barrier

Journal

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.104.067512

Keywords

-

Ask authors/readers for more resources

Cyclodextrins (CDs) can be envisaged to cure some diseases related to the brain, but the behavior of these compounds toward the blood-brain barrier (BBB) remains largely unexplored to envisage such clinical applications. To fulfill this gap, the toxicity and endothelial permeability for native, methylated, and hydroxypropylated alpha-, beta-, and gamma-CDs have been studied on an in vitro model of BBB. As shown by the endothelial permeability for sucrose and immunofluorescence stainings, the native CDs are the most toxic CDs (alpha- > beta- > gamma-CD). Whereas the chemical modification of beta-CD did not affect the toxicity of this CD, differences are observed for the alpha- and gamma-CD. To determine the origin of toxicity, lipid effluxes on the brain capillary endothelial cells were performed in the presence of native CDs. It was found that alpha-CD removed phospholipids and that beta-CD extracted phospholipids and cholesterol. gamma-CD was less lipid-selective than the other CDs. Finally, the endothelial permeability of each CD has been determined. Surprisingly, no structure/permeability relationship has been observed according to the nature and chemical modifications of CDs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available