4.7 Article

Molecular and genetic interactions between STYLOSA and GRAMINIFOLIA in the control of Antirrhinum vegetative and reproductive development

Journal

DEVELOPMENT
Volume 131, Issue 15, Pages 3649-3659

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.01205

Keywords

GRO/TUP1; co-repressor; floral organ identity; leaf development; auxin

Ask authors/readers for more resources

STYLOSA (STY) in Antirrhinum and LEUNIG (LUG) in Arabidopsis control the spatially correct expression of homeotic functions involved in the control of floral organ identity. We show here that the sty mutant also displays alteration in leaf venation patterns and hypersensitivity towards auxin and polar auxin transport inhibitors, demonstrating that STY has a more general role in plant development. STY and LUG are shown to be orthologues that encode proteins with structural relation to GRO/TUP1-like co-repressors. Using a yeast-based screen we found that STY interacts with several transcription factors, suggesting that STY, like GRO/TUP1, forms complexes in vivo. Proteins of the YABBY family, characterised by containing a partial HMG domain, represent a major group of such interactors. In vivo association of STY with one of the YABBY proteins, GRAMINIFOLIA (GRAM), is supported by enhanced phenotypic defects in sty gram double mutants, for instance in the control of phyllotaxis, floral homeotic functions and organ polarity. Accordingly, the STY and GRAM protein and mRNA expression patterns overlap in emerging lateral organ primordia. STY is expressed in all meristems and later becomes confined to the adaxial domain and (pro)vascular tissue. This pattern is similar to genes that promote adaxial identity, and, indeed, STY expression follows, although does not control, adaxial fate. We discuss the complex roles of STY and GRAM proteins in reproductive and vegetative development, performed in part in physical association but also independently.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available