4.6 Article

Indentation-induced crystallization and phase transformation of amorphous germanium

Journal

JOURNAL OF APPLIED PHYSICS
Volume 96, Issue 3, Pages 1464-1468

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1766414

Keywords

-

Ask authors/readers for more resources

It has been known for about 15 years that when a Vickers indenter is loaded on to a crystalline semiconductor, such as silicon, a semiconductor to metallic phase transition occurs during indenter loading and on removal of the indenter the material within the residual indentation becomes amorphous. Here we report a completely opposite effect: when a Berkovich or Vickers diamond indenter is loaded onto a submicrometer thick film of amorphous germanium, it crystallizes and undergoes structural phase transitions. These observations are based on our transmission electron microscopy and Raman scattering investigations, which have been described. It has also been shown that the indentation-induced crystallization and phase transitions occur close to the indenter tip, where the plastic strains are the highest. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available