4.4 Article

Electron nanodiffraction and high-resolution electron microscopy studies of the structure and composition of physiological and pathological ferritin

Journal

JOURNAL OF STRUCTURAL BIOLOGY
Volume 147, Issue 2, Pages 166-178

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jsb.2004.03.001

Keywords

ferritin; ferritin cores nanocrystals; hemosiderin; progressive supranuclear palsy; Alzheimer diseases; HRTEM; electron nanodiffraction

Ask authors/readers for more resources

Structures of core nanocrystals of physiological (horse spleen, human liver, and brain) and pathological human brain of patients with progressive supranuclear palsy (PSP) and Alzheimer's disease (AD) ferritin molecules were determined using electron nano-diffraction and high-resolution transmission electron microscopy. The poly-phasic structure of the ferritin cores is confirmed. There are significant differences in the mineral composition between the physiological and pathological ferritins. The physiological ferritin cores mainly consist of single nanocrystals containing hexagonal ferrihydrite (Fh) and hematite (Hm) and some cubic magnetite/maghemite phase. In the pathological cores, Fh is present but only as a minor phase and Hm is absent. The major phases are a face-centered-cubic (fee) structure with a = 0.43 nm and a high degree of disorder, related to wustite, and a cubic magnetite-like structure. These two cubic phases are also present in human aged normal brain. Evidence for the presence of hemosiderin together with ferritin in the pathological brains is deduced from the similarities of the diffraction patterns with those from patients with primary hemochromatosis, and differences in the shapes and protein composition of the protein shell. These findings suggest a disfunction of the ferritin associated with PSP and AD, associated with an increase in the concentration of brain ferrous toxic iron. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available