4.4 Article

Activation of a calcium-activated cation current during epileptiform discharges and its possible role in sustaining seizure-like events in neocortical slices

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 92, Issue 2, Pages 862-872

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00972.2003

Keywords

-

Ask authors/readers for more resources

Epileptic seizures are composed of recurrent bursts of intense firing separated by periods of electrical quiescence. The mechanisms responsible for sustaining seizures and generating recurrent bursts are yet unclear. Using whole cell voltage recordings combined with intracellular calcium fluorescence imaging from bicuculline (BCC)-treated neocortical brain slices, I showed isolated paroxysmal depolarization shift (PDS) discharges were followed by a sustained afterdepolarization waveform (SADW) with an average peak amplitude of 3.3 +/- 0.9 mV and average half-width of 6.2 +/- 0.6 s. The SADW was mediated by the calcium-activated nonspecific cation current (I(can)) as it had a reversal potential of -33.1 +/- 6.8 mV, was unaffected by changing the intracellular chloride concentrations, was markedly diminished by buffering [Ca(2+)](i) with intracellular bis-(o-aminophenoxy)-N, N, N', N'-tetraacetic acid (BAPTA), and was reversibly abolished by the I(can) blocker flufenamic acid (FFA). The Ca(2+) influx responsible for activation of I can was mediated by both N-methyl-D-aspartate-receptor channels, voltage-gated calcium channels and, to a lesser extent, internal calcium stores. In addition to isolated PDS discharges, BCC-treated brain slices also produced seizure-like events, which were accompanied by a prolonged depolarizing waveform underlying individual ictal bursts. The similarities between the initial part of this waveform and the SADW and the fact it was markedly reduced by buffering [Ca(2+)](i) with BAPTA strongly suggested it was mediated, at least in part, by I(can). Addition of FFA reversibly eliminated recurrent bursting, and transformed seizure-like events into isolated PDS responses. These results indicated I can was activated during epileptiform discharges and probably participated in sustaining seizure-like events.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available