4.7 Article

Natural antimicrobial susceptibility patterns and biochemical profiles of Leclercia adecarboxylata strains

Journal

CLINICAL MICROBIOLOGY AND INFECTION
Volume 10, Issue 8, Pages 724-733

Publisher

ELSEVIER SCI LTD
DOI: 10.1111/j.1469-0691.2004.00892.x

Keywords

antibiotic susceptibility; Escherichia coli; identification; Leclercia adecarboxylata; MICs

Ask authors/readers for more resources

Leclercia adecarboxylata is an opportunistic human pathogen that phenotypically resembles Escherichia coli. The natural susceptibilities of 101 Leclercia strains to 70 antimicrobial agents were investigated. MICs were determined with a microdilution procedure in cation-adjusted Mueller-Hinton broth (all strains) and IsoSensitest broth (some strains). Natural susceptibility patterns were assessed using German (DIN) standards (when applicable). In addition, biochemical properties recommended for the phenotypic identification of L. adecarboxylata were evaluated, applying two commercially available identification systems for Enterobacteriaceae and seven conventional tests. L. adecarboxylata strains were naturally sensitive to tetracyclines, aminoglycosides, all but two beta-lactams, quinolones, folate pathway inhibitors, chloramphenicol, nitrofurantoin and azithromycin. They were naturally resistant to penicillin G, oxacillin, erythromycin, roxithromycin, clarithromycin, ketolides, lincosamides, streptogramins, linezolid, glycopeptides, rifampicin, fusidic acid and fosfomycin. There were only minor medium-dependent differences in susceptibility to most antibiotics. Lysine decarboxylase, malonate assimilation and acid production from arabitol and cellobiose, but not from adonitol and sorbitol, allowed definitive separation of L. adecarboxylata from E. coli. The results of this study form a database that can be applied to validate forthcoming antibiotic susceptibility tests of L. adecarboxylata, and might contribute to its reliable identification. Susceptibility patterns did not indicate obvious therapeutic difficulties for treatment of Leclercia infections. Special attention should be paid to biochemically aberrant leclerciae. Apart from biochemical features, fosfomycin susceptibility might be useful to differentiate between L. adecarboxylata and E. coli.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available