4.5 Review

Hyaluronan catabolism: a new metabolic pathway

Journal

EUROPEAN JOURNAL OF CELL BIOLOGY
Volume 83, Issue 7, Pages 317-325

Publisher

ELSEVIER GMBH, URBAN & FISCHER VERLAG
DOI: 10.1078/0171-9335-00392

Keywords

hyaluronan; hyaluronidase; hyaluronidase inhibitors; extracellular matrix

Categories

Ask authors/readers for more resources

A new pathway of intermediary metabolism is described involving the catabolism of hyaluronan. The cell surface hyaluronan receptor, CD44, two hyaluronidases, Hyal-1 and Hyal-2, and two lysosomal enzymes, beta-glucuronidase and beta-N-acetylglucosaminidase, are involved. This metabolic cascade begins in lipid raft invaginations at the cell membrane surface. Degradation of the high-molecular-weight extracellular hyaluronan occurs in a series of discreet steps generating hyaluronan chains of decreasing sizes. The biological functions of the oligomers at each quantum step differ widely, from the spacefilling, hydrating, anti-angiogenic, immunosuppressive 10(4)-kDa extracellular polymer, to 20-kDa intermediate polymers that are highly angiogenic, immuno-stimulatory, and inflammatory. This is followed by degradation to small oligomers that can induce heat shock proteins and that are anti-apoptotic. The single sugar products, glucuronic acid and a glucosamine derivative are released from lysosomes to the cytoplasm, where they become available for other metabolic cycles. There are 15 g of hyaluronan in the 70-kg individual, of which 5 g are cycled daily through this pathway. Some of the steps in this catabolic cascade can be commandeered by cancer cells in the process of growth, invasion, and metastatic spread.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available