4.8 Article

Trans-splicing repair of CD40 ligand deficiency results in naturally regulated correction of a mouse model of hyper-IgM X-linked immunodeficiency

Journal

NATURE MEDICINE
Volume 10, Issue 8, Pages 835-841

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nm1086

Keywords

-

Funding

  1. NHLBI NIH HHS [U01 HL66952] Funding Source: Medline

Ask authors/readers for more resources

X-linked immunodeficiency with hyper-IgM (HIGM1), characterized by failure of immunoglobulin isotype switching, is caused by mutations of the CD40 ligand (CD40L), which is normally expressed on activated CD4(+) T cells. As constitutive expression of CD40L induces lymphomas, we corrected the mutation while preserving the natural regulation of CD40L using pre-mRNA trans-splicing. Bone marrow from mice lacking CD40L was modified with a lentivirus trans-splicer encoding the normal CD40L exons 2 - 5 and was administered to syngenic CD40L-knockout mice. Recipient mice had corrected CD40L mRNA, antigen-specific IgG1 responses to keyhole limpet hemocyanin immunization, regulated CD4(+) T-cell CD40L expression after CD3 stimulation in primary and secondary transplanted mice, attenuation of Pneumocystis carinii pneumonia, and no evidence of lymphoproliferative disease over 1 year. Thus, HIGM1 can be corrected by CD40L trans-splicing, leading to functional correction of the genetic defect without the adverse consequences of unregulated expression of the CD40L gene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available