4.1 Article

Drosophila cohesins DSA1 and Drad21 persist and colocalize along the centromeric heterochromatin during mitosis

Journal

BIOLOGY OF THE CELL
Volume 96, Issue 6, Pages 457-462

Publisher

WILEY
DOI: 10.1016/j.biolcel.2004.04.011

Keywords

cohesin; chromosome segregation; sister chromatid cohesion; centromere; Drosophila; mitosis

Categories

Ask authors/readers for more resources

Sister chromatid cohesion in eukaryotes is maintained mainly by a conserved multiprotein complex termed cohesin. Drad21 and DSA1 are the Drosophila homologues of the yeast Scc1 and Scc3 cohesin subunits, respectively. We recently identified a Drosophila mitotic cohesin complex composed of Drad21/DSA1/DSMC1/DSMC3. Here we study the contribution of this complex to sister chromatid cohesion using immunofluorescence microscopy to analyze cell cycle chromosomal localization of DSA1 and Drad21 in S2 cells. We observed that DSA1 and Drad21 colocalize during all cell cycle stages in cultured cells. Both proteins remain in the centromere until metaphase, colocalizing at the centromere pairing domain that extends along the entire heterochromatin; the centromeric cohesion protein MEI-S332 is nonetheless reported in a distinct centromere domain. These results provide strong evidence that DSA1 and Drad21 are partners in a cohesin complex involved in the maintenance of sister chromatid ann and centromeric cohesion during mitosis in Drosophila. (C) 2004 Elsevier SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available