4.6 Article

Expression of the sodium-myo-inositol cotransporter SMIT2 at the apical membrane of Madin-Darby canine kidney cells

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 558, Issue 3, Pages 759-768

Publisher

WILEY
DOI: 10.1113/jphysiol.2004.064311

Keywords

-

Ask authors/readers for more resources

Myo-inositol is a compatible osmolyte used by cells which are challenged by variations in extracellular osmolarity, as in the renal medulla. In order to accumulate large quantities of this polyol, cells rely on Na+-dependent transporters such as SMIT1. We have recently identified a second Na+-myo-inositol cotransporter, SMIT2, which presents transport characteristics corresponding to those recently described for the apical membrane of renal proximal tubules. In order to further characterize this transport system, we transfected Madin-Darby canine kidney(MDCK) cells with rabbit SMIT2 cDNA and selected a stable clone with a high expression level. The accumulation of radiolabelled myo-inositol by this cell line is 20-fold larger than that seen in native MDCK cells. The affinity for myo-inositol of MDCK cells transfected with SMIT2 is slightly lower (K-m = 334 mum) than that found in voltage-clamped Xenopus laevis oocytes expressing SMIT2 (K-m = 120 mum). Transport studies performed using semipermeable filters showed complete apical targeting of the SMIT2 transporter. This apical localization of SMIT2 was confirmed by transport studies on purified rabbit renal brush border membrane vesicles (BBMVs). Using a purified antibody against SMIT2, we were also able to detect the SMIT2 protein (molecular mass = 66 kDa) in Western blots of BBMVs purified from SMIT2-transfected MDCK cells. SMIT2 activity was also shown to be stimulated 5-fold when submitted to 24 h hypertonic treatment (+200 mosmol l(-1)). The SMIT2-MDCK cell line thus appears to be a promising model for studying SMIT2 biochemistry and regulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available