4.7 Article

Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity

Journal

ECOLOGICAL APPLICATIONS
Volume 14, Issue 4, Pages 1172-1177

Publisher

WILEY
DOI: 10.1890/03-5120

Keywords

carbon sequestration; forests; northern temperate; Michigan (USA); N deposition; soil enzyme activities

Ask authors/readers for more resources

Atmospheric nitrogen (N) deposition derived from fossil-fuel combustion, land clearing, and biomass burning is occurring over large geographical regions on nearly every continent. Greater ecosystem N availability can result in greater aboveground carbon (C) sequestration, but little is understood as to how soil C storage could be altered by N deposition. High concentrations of inorganic N accelerate the degradation of easily decomposable litter and slow the decomposition of recalcitrant litter containing large amounts of lignin. This pattern has been attributed to stimulation or repression of different sets of microbial extracellular enzymes. We hypothesized that soil C cycling in forest ecosystems with markedly different litter chemistry and decomposition rates would respond to anthropogenic N deposition in a manner consistent with the biochemical composition of the dominant vegetation. Specifically, oak-dominated ecosystems with low litter quality should gain soil C, and sugar maple ecosystems with high litter quality should lose soil C in response to high levels of N deposition (80 kg N(.)ha(-1.)yr(-1)). Consistent with this hypothesis, we observed over a three-year period a significant loss of soil C (20%) from a sugar maple-dominated ecosystem and a significant gain (10%) in soil C in an oak-dominated ecosystem, a result that appears to be mediated by the regulation of the microbial extracellular enzyme phenol oxidase. Elevated N deposition resulted in changes in soil carbon that were ecosystem specific and resulted from the divergent regulatory control of microbial extracellular enzymes by soil N availability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available