4.3 Article

Tissue-specific estrogenic and non-estrogenic effects of a xenoestrogen, nonylphenol

Journal

JOURNAL OF MOLECULAR ENDOCRINOLOGY
Volume 33, Issue 1, Pages 243-252

Publisher

BIOSCIENTIFICA LTD
DOI: 10.1677/jme.0.0330243

Keywords

-

Ask authors/readers for more resources

Alkylphenols perturb the endocrine system and are considered to have weak estrogenic activities. Although it is known that nonylphenol can bind weakly to the estrogen receptor, it is unclear whether all reported effects of nonylphenol are attributable to its estrogen receptor-binding activity. In order to examine whether alkylphenols have similar effects to the natural hormone, estradiol, we used a mouse model to examine the effects of nonylphenol on gene expression and compared it with estradiol. DNA microarray analysis revealed that, in the uterus, most of the genes activated by this alkylphenol at a high dose (50 mg/kg) were also activated by estradiol. At lower doses, nonylphenol (0(.)5 mg/kg and 5 mg/kg) had little effect on the genes that were activated by estradiol. Thus, we concluded that the effects of nonylphenol at a high dose (50 mg/kg) were very similar to estradiol in uterine tissue. Moreover, since evaluation of estrogenic activity by gene expression levels was comparable with the uterotrophic assay, it indicated that analysis of gene expression profiles can predict the estrogenic activities of chemicals. In contrast to the similar effects of nonylphenol and estradiol observed in the uterus, in the liver, gene expression was more markedly affected by nonylphenol than by estradiol. This indicated that, in the liver, nonylphenol could activate another set of genes that are distinct from estrogen-responsive genes. These results indicated that nonylphenol has very similar effects to estradiol on gene expression in uterine but not in liver tissue, indicating that tissue-specific effects should be considered in order to elucidate the distinct effects of alkylphenols.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available