4.7 Article

Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson's disease

Journal

EXPERIMENTAL NEUROLOGY
Volume 188, Issue 2, Pages 480-490

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2004.05.009

Keywords

globus pallidus; subthalamic nucleus; deep brain stimulation; oscillations; synchronisation; basal ganglia; Parkinson's disease

Categories

Ask authors/readers for more resources

The pattern of neuronal discharge within the basal ganglia is disturbed in Parkinson's disease (PD). In particular, there is a tendency for neuronal elements to synchronise at around 20 Hz in the absence of dopaminergic treatment, whereas this activity can be replaced by spontaneous synchronisation at much higher frequencies ( > 70 Hz) following dopaminergic treatment [J. Neurosci. 21 (2001) 1033; Brain 126 (2003) 2153]. In two PD patients (3 sides), we show that stimulating the subthalamic area at around 20 Hz exacerbates synchronisation at similar frequencies in the globus pallidus interna, the major output structure of the human basal ganglia. In contrast, stimulating the subthalamic area at > 70 Hz suppresses pallidal activity at about 20 Hz. Clinically, stimulation of the subthalamic area at similar high frequencies reverses parkinsonism and forms the basis of therapeutic deep brain stimulation in PD. The results point to a possible common mechanism by which both dopaminergic treatment associated synchronisation of subthalamic activity at very high frequency and synchronisation imposed by therapeutic stimulation of the subthalamic area inhibit an abnormal and potentially deleterious synchronisation of basal ganglia output at around 20 Hz. If this activity is unchecked by synchronisation at higher frequency, then pathological 20-Hz oscillations may cascade through the basal ganglia, increasing at subsequent levels of processing. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available