3.8 Article

Framework for soil suitability evaluation for sewage effluent renovation

Journal

ENVIRONMENTAL GEOLOGY
Volume 46, Issue 2, Pages 195-208

Publisher

SPRINGER
DOI: 10.1007/s00254-004-1026-z

Keywords

effluent renovation; onsite wastewater treatment; risk; soil suitability; Queensland; Australia

Ask authors/readers for more resources

Current methods of establishing suitable locations for onsite wastewater treatment systems (OWTS) are inadequate, particularly in light of the numerous cases of onsite system failure and the resulting adverse consequences. The development of a soil suitability framework for assessing soil suitability for OWTS allows a more practical means of assessment. The use of multivariate statistical analysis techniques, including Principal Component Analysis (PCA) and multi-criteria decision aids of PROMETHEE and GAIA, enabled the identification of suitable soils for effluent renovation. The outcome of the multivariate analysis, together with soil permeability and drainage characteristics permitted the establishment of a framework for assessing soil suitability based on three main soil functions: (1) the ability of the soil to provide suitable effluent renovation, (2) the permeability of the soil, and (3) the soil's drainage characteristics. The developed framework was subsequently applied to the research area, Gold Coast, Queensland, Australia, and the use of standard scoring functions were utilised to provide a scoring system to signify which soils were more suitable for effluent renovation processes. From the assessment, it was found that Chromosol and Kurosol soils provided the highest level of effluent renovation, closely followed by Ferrosol and Dermosol, Kandosol and Rudosol soil types. Tennosol and Podosol soil types were found to have a significantly lower suitability, with Hydrosol soils proving the least suitable for renovating effluent from OWTS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available